УДК 581.84:636.086.32

АНАТОМИЧЕСКАЯ СТРУКТУРА СТЕБЛЕЙ НЕКОТОРЫХ ВИДОВ TRIFOLIUM L. В СВЯЗИ С СИСТЕМАТИКОЙ И ЭКОЛОГИЕЙ

Наталья В. Шкуратова

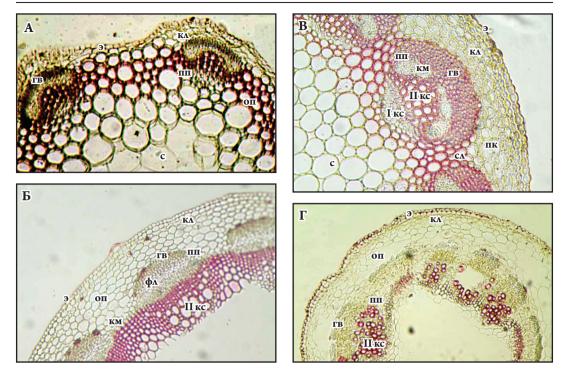
Аннотация. В статье рассматриваются результаты сравнительной анатомии стеблей четырех видов рода *Trifolium* L. Установлены комплексы анатомических признаков стеблей, которые можно использовать для диагностики на уровне вида. В анатомии стеблей *T. arvense, T. medium* и *T. montanum* наблюдаются ксерофитные черты, направленные на возможность противостоять иссушению, проявляющиеся в трех направлениях: усиление функции покровной ткани, усиленное развитие механической ткани, усиление развития водопроводящей системы.

Ключевые слова: *Trifolium*, анатомические признаки, стебель, ксерофитные черты

Учреждение образования «Брестский государственный университет имени А.С. Пушкина», бульвар Космонавтов, 21, 224016, Брест, Беларусь; schkuratova n@tut.by

Введение

В работах ботаников как прошлых лет, так и современных ученых, неоднократно показана возможность использования анатомических признаков вегетативных и генеративных органов для уточнения границ таксонов, при решении проблем научной и криминалистической диагностики растений, для установления закономерностей и характера изменения структур под действием условий обитания, в целях организации экологического мониторинга и оценки состояния окружающей среды.


Семейство Fabaceae Lindl. неоднородное по характеру жизненных форм его представителей. *Trifolium* L. – род травянистых растений данного семейства, насчитывающий около 250 видов, широко распространенных в умеренном и отчасти субтропическом поясах Северного полушария. Центрами видового многообразия являются преимущественно Средиземноморье, Западная Азия и Северная Америка.

С целью выявления анатомических признаков стебля, имеющих диагностическое значение на уровне вида и определения анатомических признаков стебля, обусловленных особенностями экологии, провели исследование анатомии стеблей представителей рода *Trifolium*.

Материалы и методы исследований

T. arvense - однолетнее растение, для которого характерен безрозеточный архитектурный тип, представленный прямостоячим растением, ветвящимся по всей длине главной оси. Т. medium, Т. montanum и *T. repens* – многолетние поликарпические растения, представляющие сложную систему отмирающих ежегодно и возобновляющиеся плодоношения следующий год из перезимовавших почек, расположенных на основании отмерших побегов.

Для исследования использовали травянистые стебли указанных видов как сложные комплексы тканей, обладающие набором диагностических признаков. Образцы стеблей собраны в естественных фитоценозах. Методика изготовления постоянных препаратов общепринятая в анатомии растений (Прозина 1960). микропрепаратов анализа фотографирования использовали световой микроскоп «Альтами» цифровую окулярную USB камеру 3.1 Мп.

Рис. 1. Поперечные срезы стебля *Trifolium arvense* (**A**), *T. medium* (**B**), *T. montanum* (**B**) и *T. repens* (Γ): **гв** – группы волокон; **ка** – колленхима; **км** – камбий; **оп** – основная паренхима; **пк** – первичная кора; **пп** – проводящий пучок; **с** – сердцевина; **сл** – сердцевинный луч; **фл** – флоэма; **э** – эпидерма; **I** кс – первичная ксилема, **II** кс – вторичная ксилема.

Fig. 1. Cross-sections through the stem of *Trifolium arvense* (**A**), *T. medium* (**B**), *T. montanum* (**B**) and *T. repens* (Γ): **rB** – groups of fibers; **KA** – collenchyma; **KM** – cambium;

on – main parenchyma; nκ – primary cortex; nn – vascular bundle; c – cortex; cn – pith ray; φn – phloem; n – epiderm; I κc – primary xylem; II κc – secondary xylem.

Результаты и их обсуждение

Анатомические признаки в разном объеме и в рамках разных таксонов используются для уточнения таксономических границ уже давно. Например, применительно к Salicaceae Mirb., признаками в структуре коры, позволяющими осуществлять видовую диагностику, являются: наличие или отсутствие трихом, их тип и строение; характер распределения аксиальной паренхимы во вторичной флоэме; величина, форма и расположение групп волокон во вторичной флоэме; форма поперечного сечения групп волокон механического кольца; форма, величина и расположение танидоносных клеток в первичной коре; форма поперечного сечения эпидермальных клеток и характер утолщения их стенок; мощность повторных перидерм,

расстояние между ними и характер отклонения последующих перидерм от предыдущих; тип кристаллов оксалата кальция в паренхимных клетках различных тканей. Однако ни один из названных признаков самостоятельно не может быть основанием для выделения какого-то конкретного вида. Точная диагностика того или иного вида возможна при использовании только комплекса признаков (Еремин и Шкуратова 2007).

Стебли исследованных видов характеризуются четким делением на эпидерму, первичную кору, центральный цилиндр. Центральный цилиндр имеет пучковое строение и включает открытые коллатеральные пучки и сердцевину с выраженной центральной полостью. Для травянистого стебля характерна сильная паренхиматизация тканей.

При сравнительном анализе структуры стеблей выделены комплексы анатомических признаков для каждого исследованного вида:

T. arvense – преобладание радиального эпидермальных клеток тангентальным; овальная форма полости эпидермальных клеток; утолщение только наружной тангентальной оболочки эпидермальных клеток; преобладание колленхиматозной толстостенной паренхимы в составе первичной коры; уголковый тип колленхимы; приуроченность колленхимы и проводящих пучков к ребрам стебля; шапковидная форма групп склеренхимных форма поперечного волокон; овальная сечения проводящих пучков; отсутствие межпучкового камбия (Рис. 1 А).

medium – тангентальный размер эпидермальных клеток больше или равен радиальному;прямоугольно-квадратнаяформа полости эпидермальных клеток; утолщение только наружной тангентальной оболочки эпидермальных клеток; преобладание тонкостенной основной паренхимы в составе первичной коры; уголковый тип колленхимы; основная паренхима первичной коры в виде кольца, подстилающего колленхиму стебля; дуговидная форма групп склеренхимных треугольно-клиновидная волокон; поперечного сечения проводящих пучков; проводящих пучков расположение окружности стебля; наличие межпучкового камбия, формирующего элементы вторичной ксилемы (Рис. 1 Б).

Т. montanum – преобладание тангентального размера эпидермальных клеток над радиальным; форма полости эпидермальных клеток; равномерное утолщение оболочек присутствие эпидермальных клеток; железистых волосков в эпидерме; преобладание тонкостенной основной паренхимы в составе первичнойкоры; пластинчатый типколленхимы; основная паренхима первичной коры в виде кольца, подстилающего колленхиму стебля; шапковидная форма групп склеренхимных волокон; овальная форма поперечного сечения проводящих пучков; присутствие кристаллов в паренхиме, прилегающей к группам волокон; расположение проводящих пучков

окружности стебля (Рис. 1 В).

Т. repens – преобладание тангентального размера эпидермальных клеток над радиальным; овальная форма полости эпидермальных клеток; равномерное утолщение оболочек эпидермальных клеток; преобладание тонкостенной основной паренхимы в составе первичной коры; уголковый тип колленхимы; основная паренхима первичной коры в виде кольца, подстилающего колленхиму стебля; лентовидная форма групп склеренхимных волокон; овальная форма поперечного сечения проводящих пучков; присутствие кристаллов в паренхиме, прилегающей к группам волокон; расположение проводящих пучков окружности стебля; присутствие межпучкового камбия, формирующего элементы вторичной ксилемы (Рис. 1Γ).

Среди исследованных видов, Т. repens является типичным мезофитом, встречающимся на сыроватых лугах, лесных полянах и опушках, приречных отмелях и галечниках, у дорог, в населенных пунктах. T. arvense и T. montanum произрастают на сухих лугах, лесных полянах и опушках, степных склонах, окраинах полей, у дорог, преимущественно на песчаных и супесчаных почвах. *Т. medium* встречается на суходольных лугах, лесных полянах и опушках, в светлых лесах, среди кустарников. Последние три вида относятся к группе ксеромезофитов, местообитаний ИХ характерен периодический недостаток влаги.

Опираясь на данные по структурному приспособлению листа к недостатку влаги (Горышина 1979), проанализировали анатомию стебля исследованных видов. В анатомии стеблей *Т. arvense, Т. medium* и *Т. montanum* наблюдаются ксерофитные черты, направленные на возможность противостоять иссушению, проявляющиеся в трех направлениях:

- усиление функции покровной ткани, что препятствует активному испарению: обильные кроющие трихомы у *T. arvense, T. medium* и *T. montanum*;
- усиленное развитие механической ткани,
 что предупреждает увядание стебля при больших потерях воды: колленхиматозная паренхима и уголковая паренхима занимают

весь объем первичной коры у *T. arvense*; мощные группы склеренхимных волокон у проводящих пучков в стеблях *T. medium* и *T. montanum*; толстостенная паренхима сердцевины у *T. arvense*, *T. medium* и *T. montanum*;

– усиление развития водопроводящей системы: высокое содержание и плотное расположение проводящих пучков у Т. montanum; активно работающий межпучковый камбий, формирующий толстостенную ксилему между пучками у Т. medium.

Признаки, подчеркивающие особенности экологии ксеромезофитных видов следующие:

T. arvense – обилие кроющих трихом, преобладание колленхиматозной паренхимы в составе первичной коры, толстостенная паренхима сердцевины;

Т. medium – обилие кроющих трихом, мощные группы склеренхимных волокон у проводящих пучков, толстостенная паренхима сердцевины, активно работающий межпучкового камбия, формирующий толстостенную ксилему между пучками;

Т. montanum – обилие кроющих трихом, мощные группы склеренхимных волокон у проводящих пучков, толстостенная паренхима сердцевины, высокое содержание и плотное расположение проводящих пучков.

Заключение

Сравнительно-анатомический анализ стеблей четырех видов рода *Trifolium* позволяет утверждать, что диагностическое значение на уровне вида имеет следующий комплекс стебля: анатомических признаков форма эпидермальных клеток; характер утолщения оболочек эпидермальных клеток; наличие железистых волосков; характер основной паренхимы первичной коры; тип колленхимы; групп механических волокон; наличие кристаллоносной обкладки у групп склеренхимных волокон, сопровождающих проводящие пучки; форма поперечного пучков, сечения проводящих характер расположения проводящих пучков; наличие активного межпучкового камбия; образование сплошного кольца ксилемы.

В анатомии стебля *Т. arvense, Т. montanum* и *Т. medium* обнаружены ксерофитные черты, направленные на возможность противостоять иссушению.

Таким образом, установлены специфические черты анатомического строения стеблей представителей рода *Trifolium*, комплекс которых можно использовать для диагностики на уровне вида, и признаки, обусловленные особенностями их экологии.

Цитируемые источники

Прозина М. Н. 1960. Ботаническая микротехника. Высшая школа, Москва.

Еремин В.М., Шкуратова Н.В. 2007. Сравнительная анатомия коры ивовых. Монография. Издательство БрГУ, Брест.

Горышина Т.К. 1979. Экология растений. Высшая школа, Москва.

ANATOMICAL STRUCTURE OF STEMS OF SOME SPECIES OF TRIFOLIUM L. IN CORRESPONDENCE WITH THE SYSTEMATICS AND ECOLOGY

Natalya V. Shkuratova

Abstract. The article discusses the results of a comparative study of the anatomy of the stems of 4 *Trifolium L*. species. Complexes of stem anatomical characteristics which can be applied for species diagnostic are described. Anatomy of *T. arvense, T. medium* and *T. montanum* shows xerophytic features aimed on desiccation resistance, manifested in three directions: increased functions of epidermal tissue, enhanced development of mechanical tissues, increased development of water conducting system.

Key words: *Trifolium,* anatomical characteristics, stem, xerophytic features